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Abstract
The Euler characteristic of an object is a topological invariant determined by the number of
handles and holes that it contains. Here, we use the Euler characteristic to profile the topology
of model three-dimensional gel-forming fluids as a function of increasing length scale. These
profiles act as a ‘topological fingerprint’ of the structure, and can be interpreted in terms of
three types of topological events. As model fluids we have considered a system of dipolar
dumbbells, and suspensions of adhesive hard spheres with isotropic and patchy interactions in
turn. The correlation between the percolation threshold and the length scale on which the Euler
characteristic passes through zero is examined and found to be system-dependent. A scheme for
the efficient calculation of the Euler characteristic with and without periodic boundary
conditions is described.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Colloidal gels can be made from a wide array of different
particles and by many different routes. However, their common
and defining features include low density, disordered structure
and some degree of dynamical arrest [1]. Gels therefore often
take the form of a percolating network, in which chain-like
structures are interlinked at junctions, and sizeable voids are
encompassed.

One way to encourage the formation of such open
structures with respect to more compact ones is through
anisotropic or patchy interactions. An advantage of this route
to gel formation is that limiting the coordination number of
the particles decreases the critical temperature and density of
the gas–liquid-like transition. This means that gelation can be
studied reversibly, without the intervention of phase separation,
to arbitrarily low densities [2]. A more general understanding
of gels has been gained in recent years from studying idealized
models with a combination of theoretical tools and computer
simulation [3, 4].

Common structural measures like the radial distribution
function and its Fourier transform, the static structure factor,
naturally provide useful information about gel structure.
However, these quantities are based on the direct distances
between particles through space, and therefore do not always
reveal whether or how a pair of particles are connected
through the intervening structure. For gel-like networks, a

clearer picture of this connectivity can be helpful, making a
topological analysis desirable.

In this paper, we investigate the Euler characteristic (EC)
as a tool for quantifying the topology of model gels as a
function of length scale. In section 2, we specify the models
and outline the simulations that were performed. The EC is
then introduced and used to analyse the gels in section 3. The
connection between the EC and the percolation threshold is
investigated in section 4. We then provide a summary and some
closing remarks in section 5. The appendix describes how the
EC can be calculated efficiently and addresses issues related to
periodic boundary conditions and structural data derived from
experiments.

2. Models and simulations

2.1. Dipolar dumbbells

The first model studied is a fluid of soft dipolar dumbbells,
introduced recently to explore network formation and
dynamical arrest in a physical gel [5, 6]. Dipolar particles
readily aggregate into chains [7], but chains of point dipolar
spheres show only a weak tendency to form interconnecting
junctions [8]. Extending the repulsive core into a dumbbell
and at the same time separating the point dipole into discrete
charges enhances network formation [5].

Our dumbbells consist of two interaction sites separated
by a fixed distance d , each carrying a soft repulsive core and a

0953-8984/10/104109+08$30.00 © 2010 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/22/10/104109
http://stacks.iop.org/JPhysCM/22/104109


J. Phys.: Condens. Matter 22 (2010) 104109 M A Miller et al

Figure 1. Schematic diagrams of the dipolar dumbbell model (left)
and a patchy adhesive hard sphere (right). In the latter, the black
region represents the adhesive patch and we have taken α = 101.54◦
such that the patch covers 60% of the surface. Two patchy spheres
attract only if their point of contact lies within the black region of
both spheres.

point charge—one of +q and the other of −q (figure 1). For
two sites on different dumbbells separated by r , the repulsive
interaction is c/r 12 while the charge–charge interaction is
the Coulomb energy ±q2/4πε0ε

′r . Here, ε0 and ε ′ are the
permittivity of free space and the relative permittivity of the
medium, respectively.

We define the reduced unit of length σdb to be
the separation of the dumbbell centres in the head-to-tail
configuration of lowest pair energy. The natural unit of energy
is then u = μ2/4πε0ε

′σ 3
db, where μ = qd is the dipole

moment of a dumbbell. In terms of these definitions, we
have set the repulsion coefficient at c = 0.0208uσ 12

db and
the separation of sites at d = 0.217σdb. Reduced density
and temperature are defined by ρ∗ = Nσ 3

db/V and T ∗ =
kBT/u, respectively, where kB is Boltzmann’s constant and the
simulation cell contains N particles in a volume V . We will
take φ = πρ∗/6 as an estimate of the packing fraction.

Systems of N = 1000 dumbbells were simulated
with the GROMACS package [9] using a Berendsen
thermostat [10] and the standard Verlet leapfrog algorithm [11]
for constant-temperature molecular dynamics, with cubic
periodic boundary conditions and the particle-mesh Ewald
method for the electrostatics [11]. Although Newtonian
dynamics neglects both the Brownian motion of the particles
and the hydrodynamic effect of the solvent in a colloidal
suspension, the present work is concerned only with
equilibrium structure, on which the details of the dynamics
have no effect.

The gas–liquid-like critical point of soft dipolar dumb-
bells has very recently been calculated by Braun and
Hentschke [12]. Our model is mapped onto equation (1) of
their work by taking d = 0.389. Converting to our scheme
of reduced units, the critical temperature is T ∗

c = 0.18 and
the critical packing fraction lies at the very low value of φc =
0.014. Although we have studied a temperature range that in-
cludes significantly subcritical values, our packing fractions
are relatively high (though still not dense by the standards of
liquids) and we have not observed signatures of phase separa-
tion [5, 6].

2.2. Adhesive hard spheres

The structure of the dipolar dumbbell fluid is dominated by
self-assembled chains, which lead to percolating networks at

rather low packing fractions. As a contrasting example, we
also study systems of adhesive hard spheres [13] (AHS), which
are the archetypal model for suspensions of spherical colloidal
particles with strong short-range attractive forces.

The AHS potential U(r) is derived from a hard sphere
with square well attraction by taking the limit where the well
depth becomes infinite at the same time as its width becomes
infinitesimal in such a way that the second virial coefficient
remains finite [13]. The resulting potential is most concisely
expressed in terms of the Boltzmann factor:

e−U(r)/kT = �(r − σhs) + σhs

12τ
δ(r − σhs), (1)

where σhs is the diameter of the hard core and τ is an
effective temperature or inverse stickiness, which replaces the
thermodynamic temperature T . The Heaviside step function
� sets the weight of any configuration with overlapping hard
cores to zero, while the Dirac δ function accounts for the
adhesive attraction at particle contact. The packing fraction
is unambiguously defined by φ = Nπσ 3

hs/6V .
The adhesive limit has the advantage that the integrated

Boltzmann weights for a particle with one, two or three bonds
can be calculated analytically. This means that a dedicated
Monte Carlo algorithm can be devised, in which steps consist
not of random displacements, but of the explicit making and
breaking of up to three bonds at a time [14–16]. Highly
coordinated states can be reached through a sequence of such
steps. A detailed account of the simulation method can be
found in [17].

The attraction described by equation (1) is isotropic. We
have also examined a patchy version of the AHS model,
in which the attractive interaction does not apply to the
entire surface of the spheres. Instead, each particle has a
circular patch that subtends an angle 2α at the centre of the
sphere [18, 19] (figure 1). Two spheres may only adhere if the
point of contact between them lies within the patch on both
particles. If the contact lies outside one or both of the patches,
the interaction is that of hard spheres. This modification of
the AHS potential amounts to inserting an angular criterion in
front of the δ function in equation (1) and is straightforward to
incorporate into the Monte Carlo algorithm [19].

We have chosen a patch angle of α ≈ 101.54◦, such that
the fraction of the sphere surface covered by the patch is S =
sin2(α/2) = 0.6. Although more than half the surface remains
adhesive, the structure of the fluid is disrupted by the geometric
constraints that bonds must satisfy in order for the patches on
adjacent spheres to align. The second virial coefficient of the
patchy AHS model is [19] B2 = Bhs

2 (1 − S2/4τ ), where Bhs
2

is the hard sphere value. Hence, the isotropic AHS (equivalent
to S = 1) and patchy AHS should be compared at values of
the scaled effective temperature τ ′ = τ/S2 to account for the
trivial effect of removing some of the attraction in the patchy
case.

3. Euler characteristic

In recent work the Euler characteristic χ has been used as a tool
for structural analysis [6, 20] to complement more common
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quantities like the radial distribution function, the structure
factor and other correlation functions. The EC has been
particularly informative in systems where the structure has
prominent topological features such as loops or tunnels [21].
In three dimensions, the EC is related to one of the four
scalar Minkowski functionals that describe a surface. These
functionals are, respectively, the volume enclosed by the
surface, the total surface area and both surface integrals of the
mean and Gaussian curvature. If the latter is normalized by
a factor 2π , we obtain the EC. Somewhat surprisingly, this
quantity is an integer related to the number of objects, handles
and holes in the surface. An alternative approach to calculating
the EC is via a tessellation of the surface with convex polygons
and application of Euler’s result χ = V − E + F , where
V , E , and F denote the number of vertices, edges and faces,
respectively, in the tessellated surface.

To analyse the structure of a collection of particles
using the EC, it is necessary to associate a surface with any
instantaneous configuration specified by the positions ri (i =
1, . . . , N) of the particles. Clearly there are many possible
ways to introduce such a surface, but a particularly simple
choice is obtained by using iso-surfaces of the function

�(X) = min
i

|X − ri |, (2)

where X is a point in the three-dimensional space occupied by
the particles. The surface �(X) = R is then formed by the
joined surfaces of spheres with radius R centred at the positions
of the particles. For this specific family of surfaces, the Euler
characteristic χ(R) can be calculated efficiently.

Due to its discrete nature, the EC varies with R through
a series of discontinuous jumps. These jumps occur when
an ‘event point’ is incorporated into the surface, changing its
topology. A given point in space that is nearest to only a single
coordinate ri cannot be an event point. This follows from
the fact that the EC of a surface is invariant under continuous
deformation of that surface, in particular a deformation in
which part of a spherical surface is modified by increasing
its radius. Hence, an event point must lie at equal distance
from at least two particles with no other particles being closer.
Consequently, all event points must lie on the boundary of the
Voronoi cells defined by the particle coordinates.

For small values of R, the surface �(X) = R is formed by
N non-overlapping spheres. Since the EC of a single sphere is
2, the EC of the total surface is χ(R) = 2N . By gradually
increasing the radius of all spheres simultaneously, we can
follow the development of the surface and, at specific values of
R, observe changes in the topology of the surface that change
the EC. In three dimensions one can distinguish three types of
events that lead to a discontinuous topological change of the
surface �(X) = R and that hence change the EC:

(1) A two-particle event occurs when two spheres touch at
X. If the two partial surface areas were not connected
before, the number of disjunct surfaces is decreased by
one, otherwise an additional loop (handle) is formed in the
surface. In either case the EC is decreased by 2. The event
point itself lies halfway between the two particles involved
and, since no particle lies closer (otherwise �(X) < R),

Figure 2. Closure of loops (handles) on two length scales as the
diameter D grows: triplets of neighbouring particles (upper panels)
and loops formed by branched chains (lower panels).

it necessarily lies on the common face of the Voronoi cells
of the two particles.

(2) A three-particle event takes place when a point X on the
surface lies at an equal distance R from three particles
that have mutual separations less than 2R. In that case
an existing loop in the surface is removed, increasing the
EC by 2. Since no other particle is found nearer, the event
point lies on an edge common to the three Voronoi cells
of the particles involved. See figure 2 for illustrations of
this type of event both on the length scale of individual
particles and on that of larger loops in the structure.

(3) A four-particle event is found at a point X on the surface
that is equidistant to four non-coplanar particles, each at
distance R from X and which lies within the tetrahedron
defined by the four particles’ coordinates. This topological
event removes a cavity (hole) that exists for �(X) < R,
thus decreasing the EC by 2. Such an event point lies at a
vertex common to the Voronoi cells of the four particles.

The effect that each of these events has on the EC can be
checked by careful examination of a tessellation of the surface
and counting the difference in the number of faces, edges and
vertices caused by the event. It should be noted that, in certain
specific geometries, three- and four-particle events can occur
at points that are equidistant from more than three or four
particles, respectively. For example, a three-particle event can
take place on a Voronoi edge that is common to four, rather than
to three, cells. However, it is not necessary to search for such
cases specifically, since they are automatically detected when
any three or four of the particles, respectively, are considered.

In order to compute the EC, we need to detect all possible
events and evaluate the numbers Ni (R) of i -particle events
(i = 2, 3, 4) that take place at radii less than R. The cumulative
nature of these functions can be exploited to enhance efficiency
of the computation. The EC as a function of the sphere radius
R follows from

χ(R) = 2[N − N2(R) + N3(R) − N4(R)]. (3)
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This function tracks the evolution of the system’s topology as
the length scale specified by R is varied. In order to facilitate
comparison between different cases, we will in the remainder
of this paper normalize the EC by dividing it by its value,
2N , at small R. For sufficiently large R, a periodic system
is completely engulfed by the merged spheres and none of the
surface � remains. The normalized EC, κ = χ/2N , will
therefore start with a plateau at unity and converge to zero
for large radii. In addition, we will use the diameter D =
2R, rather than the radius, to characterize the notional sphere
centred on each particle. If we denote the contributions to the
EC of the different types of events by ni (D) = Ni (R)/2N , we
obtain

κ(D) = 1 − n2(D) + n3(D) − n4(D). (4)

Figure 3(a) shows the Euler characteristic profile κ(D),
averaged over a trajectory, for the dipolar dumbbell fluid at
a packing fraction of φ = 0.0745 at a series of reduced
temperatures T ∗ [6]. At high temperatures, the particles do
not cluster and the structure of the fluid is close to that of an
ideal gas. The EC profile therefore approaches a limiting form
corresponding to randomly distributed points (see equation (5)
in section 4). This profile simply scales with density as
φ−1/3 along the D axis. As the fluid is cooled, small chain-
like clusters appear, leading to a large number of two-particle
events around D = σdb and a steep drop in κ(D). The
EC profile continues to change as T ∗ is lowered through the
percolation temperature 0.177 [5], and its first minimum shifts
to smaller D as the majority of particles become incorporated
into long chains. The percolation threshold marks the point
where the chains of dipoles first become connected across
the periodic boundary conditions. However, the structure
evolves significantly as T ∗ is lowered still further, developing
an increasingly sharp dip near D = σdb as the chains begin to
bundle. Segments of parallel chains lead to the formation and
then closure of small tori of three neighbouring particles of the
type illustrated at the top of figure 2. The sensitivity of the EC
to these ongoing changes is one of its strengths as a structural
measure.

In contrast, figure 3(b) shows the equivalent EC profiles
for a modified version of the dumbbell model, where the
distance d between the interaction sites has been contracted
to one-fifth of the value given in section 2. The charges q
have been increased by a factor of 5 to keep the dipole moment
μ = qd unchanged. The fact that these more point-like dipoles
in a more spherical core are less prone to network formation
is evident from the EC profile. On cooling from a high
temperature, the steep drop in κ(D) arises as in the original
dumbbell model, but this drop now terminates abruptly close
to κ = 0. The zero in κ is the result of each particle in a chain
having two neighbours, which leads to N2 = N two-particle
events and χ = 0 in equation (3). The EC only changes again
when D becomes large enough to connect independent chains.
Furthermore, the almost unchanging EC profile at the lowest
few temperatures in figure 3(b) illustrates that the structure of
the fluid of contracted dumbbells is much less responsive to T ∗
than that of the original dumbbell model.

To understand how the EC profile varies with diameter,
it can be helpful to examine the contributions n1, n2 and

Figure 3. Euler characteristic profiles for dipolar dumbbells at
packing fraction φ = 0.0745 and a series of reduced temperatures, as
marked. (a) Model as described in section 2 and (b) modified model
with less extended dumbbells.

n3 in equation (4) separately. The functions ni(D) are all
monotonic because of the cumulative effect of the event points.
Consequently, plots of ni (D) do not always indicate clearly
that some structural change is taking place. It can therefore be
advantageous to examine the derivatives n′

i (D) = dni (D)/dD
of the different contributions. These give the ‘density’ of
each type of topological event with increasing length scale D,
thereby highlighting changes in the topology.

As an example, figure 4(a) shows n′
i (D) for the dipolar

dumbbell model at φ = 0.0745 and two different temperatures.
The more organised structure at lower temperature is reflected
in the peaks that emerge in the solid curves. For small
diameters D there is a close connection between the EC
derivatives and the radial distribution function g(r), which
is plotted in figure 4(b) for comparison. The first peak
in g(r) corresponds roughly to the first peak in n′

2, which
dominates the full Euler characteristic κ(D) at this stage.
The correspondence arises because there is always a two-
particle event halfway between any particle and its closest
neighbour. Even subsequent peaks can sometimes be related,
but this requires an unobstructed path between particles at such
distances. An example of this correspondence is observed
in the dipolar dumbbell gel at ‘square’ junctions, where four
chains of dumbbells meet at a roughly coplanar set of four
dumbbells. The distance between opposite corners of these
squares is about 1.35σdb. The joining of opposite corners is
picked up in n′

2(D) (because of the new contact) and n′
3(D)
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Figure 4. (a) Derivatives n′
i = dni/dD of the i-particle (i = 2, 3, 4)

topological contributions to the Euler characteristic and (b) radial
distribution function for dipolar dumbbells at packing fraction
φ = 0.0745 and reduced temperatures T ∗ = 0.041 (solid lines) and
T ∗ = 0.122 (dashed lines).

(because a loop closes). It can also be seen as a subsidiary
peak in g(r).

The n′
3(D) curve also clearly shows a peak around D =

1.2σdb, corresponding to closure of small tori of the type
illustrated in the top panels of figure 2. This peak has no
partner in n′

2(D) or g(r), since it does not correspond to an
interparticle distance. The direct connection between peaks
in g(r) and κ ′(D) is also lost for larger D, since the radial
distribution is a two-particle correlation function, whereas
the EC picks up three- and four-particle correlations and
only correlates neighbouring particles via the events in which
handles and holes in the surface � are closed. Comparison of
figures 4(a) and (b) shows that topological changes continue
to arise in considerable numbers at distances where the radial
distribution function has virtually settled down to unity.

The connection between local structure [22] and topology
can be seen clearly even in the total EC for the AHS fluids
because of the hard repulsive core and δ-function adhesion,
which lead to discontinuous changes in κ(D). An example
is shown in figure 5 at a combination of packing fraction and
effective temperature that is in the percolating regime for both
the isotropic and patchy cases. Discontinuities are seen at
(i) D/σhs = 1, where two-particle events occur between all

Figure 5. Euler characteristic profiles for isotropic (solid line) and
patchy (dashed line) adhesive hard spheres at packing fraction
φ = 0.262 and effective temperature τ ′ = 0.125.

pairs of adhered spheres, (ii) D/σhs = 2/31/2, where tori at
the centres of three mutually adhered spheres close via three-
particle events (see the top panels of figure 2) and (iii) D/σhs =
(3/2)1/2, where holes at the centres of tetrahedra of four
mutually adhered spheres close via four-particle events. The
isotropic and patchy AHS profiles also differ at longer length
scales. The three contributions n2, n3 and n4 (not shown) all
reach somewhat higher values at large D in the patchy case,
indicating a greater number of topological events across a wide
range of length scales. Furthermore, the contributions are all
shifted to larger D, indicating that larger loops and cavities
exist in the patchy case. In particular, the late approach of
the EC to zero from above in the patchy case is due to the
closure of large cavities in the fluid. These features suggest a
more inhomogeneous structure in the fluid of patchy spheres.
The adhesion leads to locally dense regions, but the patchiness
prevents dense clusters from growing in all directions.

4. Percolation

As we have seen, if we consider the family of surfaces
for which the Euler characteristic is determined, we find
unconnected components for small sphere sizes and, on
increasing the diameter, that the spheres merge and eventually
percolate. Since the EC is sensitive to topological changes
one might expect it to provide information on the percolation
threshold. Although a completely general connection is
still missing, there is some evidence that supports this idea,
suggesting that the first zero of the EC forms a good estimate
for the percolation threshold [23, 24].

In their work, Neher et al [24] examined a variety of
two- and three-dimensional lattices, where each lattice point
is randomly coloured black with a probability p and the
remainder are white. For small values of p, some isolated black
clusters are found. On increasing the value of p, the number
and size of black clusters increase, and for a critical value
p = pc they form a percolating structure. The nature of these
lattices and the independent probability of sites being white or
black enable the EC to be computed in a simple and direct way,
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based on the fact that the contribution of a lattice point can
be determined locally. It turns out that for the Archimedean
lattices in two dimensions the first zero, at p = p0, in the EC
χ(p) is a close upper bound to the percolation threshold. For
a selected set of lattices in three dimensions χ(p) = 0 also
provides a reasonable estimate of the percolation threshold.

For non-lattice models such an analysis in general is much
more complicated. One exception is a random collection of
equally sized penetrable spheres (an ideal gas), for which the
EC per particle can still be found analytically. Using the same
normalization as in the preceding section, it is given by

κ(φ) =
[

1 − 3φ + 3π2

32
φ2

]
e−φ, (5)

where φ = π D3ρ/6 is the volume fraction. This is a
special case of a more general result from integral geometry
for clusters formed by convex grains of arbitrary shape [23].
The solution of κ(φ) = 0 found here at φ0 = 0.377 should be
compared to the percolation threshold at φc = 0.34.

We will now test whether this apparent correlation
between the zero of the EC and the percolation threshold
extends to the more complex systems that we have considered.
We have already seen in figure 3(b) that κ(D) turns abruptly
at a point close to κ = 0 in a system of contracted dipolar
dumbbells due to the formation of well-defined unbranched
chains. It should be noted, however, that the link between κ

and the percolation threshold has not been proved rigorously
in the general case and has only been illustrated for random,
i.e. noninteracting, systems. It is therefore not clear a priori
that such a relationship should hold for the network-forming
fluids discussed in this paper.

For the dipolar dumbbell model described in section 2, we
regard two dumbbells to be connected if two interaction sites—
one on each particle—approach more closely than σdb. To be
compatible with this definition, we will need to evaluate the
EC for the 2N interaction sites in the system of N dumbbells,
rather than for the N centres-of-mass as used in figures 3
and 4. The quantity of interest with respect to the percolation
threshold is then κ(σdb), the EC evaluated at the neighbour
criterion.

Figure 6(a) shows how κ(σdb) varies with packing fraction
along several isotherms. Superimposed on the isotherms is the
percolation threshold as a parametric function of the reduced
temperature. The percolation threshold has been defined
here as the density at which 50% of the snapshots during
a dynamical trajectory contain a cluster that is connected to
its own images through the periodic boundary conditions.
This 50% criterion is close to the crossing point in a full
finite-size scaling analysis [6]. At low temperatures, the EC
approaches zero at the percolation threshold, and although it
becomes slightly positive as the threshold is traced to higher
temperatures, it remains quite small (less than 0.04) over the
wide range of packing fractions φ studied here. This trend
can be rationalized in terms of the chain-like structure of the
fluid. At low temperature, the percolation threshold lies at very
low values of φ and the structure of the fluid is dominated
by chains. Because of the low density, branches are rare,
leading to a result similar to that in figure 3(b), where a uniform

Figure 6. Open symbols: normalized Euler characteristic evaluated
at the neighbour criterion along isotherms at the labelled reduced or
effective temperatures. Filled symbols: percolation threshold. Lines
are a guide to the eyes. (a) Dipolar dumbbell fluid, (b) adhesive hard
spheres, (c) patchy adhesive hard spheres.

system of long chains has a zero EC. At higher temperatures,
the percolation threshold comes at higher packing fractions,
where the structure is not so dominated by clearly discernible
chains. This leads to a more complicated topology, and hence
a somewhat non-zero EC at contact.

Moving to more dense fluids, figures 6(b) and (c) show
corresponding plots for isotropic and patchy adhesive hard
spheres, respectively. Here, neighbours are unambiguously
defined as pairs of spheres lying exactly σhs apart. The

6
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Figure 7. Percolation threshold (solid lines) and first zero of the
Euler characteristic (dashed lines) for isotropic adhesive hard spheres
(circles) and patchy adhesive hard spheres (squares).

isotherms of κ(σhs) are quite steep, showing the sensitivity of
the EC to density as well as to effective temperature. In the
isotropic case (figure 6(b)), the percolation threshold traces
out a fairly flat curve in the κ–φ plane at sufficiently high
temperatures. However, its value is significantly non-zero
(around 0.2) and there is stronger temperature dependence at
lower τ ′.

In the patchy case (figure 6(c)), the lack of correspondence
between the percolation threshold and the zero of the EC is
even more pronounced, with κ(σdb) reaching large negative
values at percolation when τ ′ is low. This again reflects the
disruption of the network by the anisotropic adhesion, leading
to a structurally inhomogeneous fluid.

An alternative comparison between the EC and percola-
tion threshold of the AHS models [17, 19] is presented in fig-
ure 7, where the zero of the EC and the percolation threshold
are plotted in the τ ′–φ plane. Percolation is suppressed by the
patchiness, so that the patchy AHS threshold lies systemati-
cally at higher densities than the isotropic one. Although the
κ(σhs) = 0 curves have a qualitatively similar shape, they de-
viate from the percolation threshold, overestimating the perco-
lation density at high temperature and underestimating it at low
temperature.

5. Summary and concluding remarks

Being a topological invariant of a surface, the Euler
characteristic is not affected by deformations that do not
change the number of objects, handles and holes. Hence, for a
given diameter D, the surface of overlapping spheres centred at
the sites of particles in a fluid or gel gives information about the
connectivity of the structure on the corresponding length scale.
This information is different from and complementary to more
common structural measures such as the radial distribution
function, though we have seen that κ(D) and g(r) are related
at short length scales. Since the EC probes connectivity on all
length scales, it is most likely to be a useful tool when a system
has an inhomogeneous structure, such as in low-density gels,
where locally dense branches and junctions are separated by
large voids.

The profile of the EC with increasing D can be
rationalized in terms of the three types of topological event
and the characteristic length scales on which they occur.
The derivatives of the contributions, which give the density
of events with respect to length scale, highlight changes in
topology. A key advantage of the EC is that it responds
sensitively to changes in topology that are not so easily
discerned in purely structural functions. Hence, although a
plot of κ(D) does not provide an immediately intuitive picture
of a system’s structure, changes in κ(D) with respect to
temperature and density or to the interparticle potential, give
insight into the system’s response to these parameters. The
EC profile itself can be regarded as a ‘topological fingerprint’
of the fluid. The comparisons made here between a low-
density gel of dipolar dumbbells and more dense fluids of
adhesive hard spheres indicate that the EC fingerprint is more
informative in the former case, where a network structure and
an associated topology are readily discernible.

The relationship between the percolation threshold and the
first zero of the EC has been shown to depend quite strongly
on the system in our selection of models. The fact that the
correspondence is best for fluids dominated by chains is easily
explained by the twofold coordination of particles under those
conditions. Indeed, a mean coordination number of about
2 at the percolation threshold has long been investigated as
a potential invariant, though significant deviations from this
value are often found [25, 26]. We believe that the present
contribution is the first time that the relationship between
the Euler characteristic and percolation has been numerically
investigated in off-lattice, strongly interacting models.
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Appendix. Calculation of the Euler characteristic

In order to compute the Euler characteristic of the family of
surfaces formed by N equally sized spheres, the various event
points need to be located. To this end, a Voronoi construction
is first made for the set of sphere centres, because for this
particular set of surfaces the event points are always located
on the boundaries of the Voronoi cells.

For each face in the Voronoi construction that is
intersected by the line connecting the two adjacent particle
positions, a two-particle event is found. Each Voronoi edge
that intersects the polygon defined by the adjacent particles
contains a three-particle event. Finally, each Voronoi vertex
that falls within the polyhedron formed by the adjacent
particles is the location of a four-particle event. Note that in
most cases the polygon and polyhedron are formed by only
three and four particles, respectively. The radius of the sphere
for which the event takes place is simply the distance from the
event point to any of the adjacent particles.

In a simulation of a periodic system, each event should
only be counted once, which can be achieved by restricting the
analysis to event points that are found in the central simulation
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box. The Euler characteristic can also be computed for finite
samples. This relies on the fact that the computation can also
be performed locally, i.e. the Voronoi cell of a single particle
can be constructed and its contributions to the EC analysed.
However, since event points belong to several particles, each
event should be assigned a weight that is equal to the reciprocal
of the number of particles adjacent to the event point. This
weighting compensates for the multiple counting that arises
from considering all the event points associated with each
particle in turn. Following this procedure for all particles in the
central box of a periodic system will lead to the same result.

For a finite sample, e.g. as obtained by confocal
microscopy of colloidal particles, one typically only observes
the particles within a cuboidal sub-volume of the full sample.
A Voronoi construction can still be made in such a case.
The Voronoi cells of the particles near the boundary of the
observation window, however, will partially lie outside the
range for which particles are detected and may even extend to
infinity. Obviously, some of the event points calculated in this
case will be wrong, because particles outside the observation
window, whose positions are not known, would modify the
shape of the Voronoi cells of particles within the window. In
fact, even Voronoi cells that are completely situated within the
observation window might not be correct. To obtain a correct
EC per particle in a finite sample, only those particles should
be considered for which the Voronoi cell cannot be influenced
by any unobserved particle outside the viewing window. This
is guaranteed when the Voronoi cell lies completely within the
observation window and the closest distance from any point
on the cell to the boundary of the observation window exceeds
the distance to the particle contained in the cell. Note that,
since not all particles that give rise to an event might satisfy
this constraint, events that are found near the border of the
sample might have a lower weight than events in the centre
of the sample. This discrepancy should average out provided
that the sub-volume is representative of the whole system.
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